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Changing climate and socioeconomic factors 
contribute to global antimicrobial resistance
 

Weibin Li    1,2,14, Tingting Huang3,14, Chaojie Liu    4, Haishaerjiang Wushouer2,5, 
Xinyi Yang1, Ruonan Wang1, Haohai Xia1, Xiying Li1, Shengyue Qiu1, 
Shanquan Chen6, Hung Chak Ho7, Cunrui Huang    8, Luwen Shi2,5, 
Xiaodong Guan    2,5, Guobao Tian    9, Gordon Liu10,11, Kristie L. Ebi    12 & 
Lianping Yang    1,11,13 

Climate change poses substantial challenges in containing antimicrobial 
resistance (AMR) from a One Health perspective. Using 4,502 AMR 
surveillance records involving 32 million tested isolates from 101 countries 
(1999–2022), we analyzed the impact of socioeconomic and environmental 
factors on AMR. We also established forecast models based on several 
scenarios, considering antimicrobial consumption reduction, sustainable 
development initiatives and different shared socioeconomic pathways 
under climate change. Our findings reveal growing AMR disparities between 
high-income countries and low- and middle-income countries under 
different shared socioeconomic pathway scenarios. By 2050, compared with 
the baseline, sustainable development efforts showed the most prominent 
effect by reducing AMR prevalence by 5.1% (95% confidence interval (CI): 
0.0–26.6%), surpassing the effect of antimicrobial consumption reduction. 
Key contributors include reducing out-of-pocket health expenses  
(3.6% (95% CI: −0.5 to 21.4%)); comprehensive immunization coverage  
(1.2% (95% CI: −0.1% to 8.2%)); adequate health investments (0.2% (95% CI: 
0.0–2.4%)) and universal access to water, sanitation and hygiene services 
(0.1% (95% CI: 0.0–0.4%)). These findings highlight the importance of 
sustainable development strategies as the most effective approach to help 
low- and middle-income countries address the dual challenges of climate 
change and AMR.

Antimicrobial resistance (AMR) is a main threat to global health. 
The current estimate shows that bacterial AMR is responsible for 
approximately 1.14 million deaths in 2021, with an expected increase 
to 1.91 million deaths in 2050 (ref. 1). It disproportionately affects low- 
and middle-income countries (LMICs)1–3, and goes beyond increasing 
healthcare costs by undermining patient care outcomes4. Extensive 
research has identified several factors contributing to AMR, with 
the overuse and misuse of antimicrobials being a primary driver.  
However, addressing AMR in healthcare alone is not enough5,6; agri-
cultural practices7, animal husbandry8 and wastewater treatment9  

also play a role. This highlights the need for a comprehensive AMR 
management strategy that integrates these various factors.

Climate change is believed to substantially worsen the AMR 
crisis10–12. Environmental events associated with climate change such as 
rising ambient temperatures13–16, air pollution17,18 and extreme weather 
events such as floods19–21, have increasingly concerning impacts on 
the development and spread of AMR. However, the complex nature of 
climate change effects and uncertainty surrounding future scenarios 
make it challenging to quantify the exact influence of climate change 
on AMR22.
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Studies emphasize the importance of mitigating AMR risks 
through measures such as improving environmental sanitation, ensur-
ing access to clean water, promoting effective antibiotic stewardship, 
increasing public health funding, improving microbiological test-
ing infrastructure, enhancing AMR surveillance and implementing 
stricter regulation of the private health sector1,23,24. LMICs face unique 
challenges in the fight against AMR due to issues such as poverty, 
corruption, inadequate sanitation and poor testing infrastructure, 
which exacerbate AMR compared with their high-income country (HIC) 
counterparts25–27. Additionally, LMICs often face the difficult choice 
between investing in infrastructure and combating AMR28, further 
complicated by limited expertise, low public awareness, insufficient 
monitoring, restrictive regulatory environments and fragile healthcare 
systems29,30. Developing effective AMR intervention strategies within 
the resource and infrastructure constraints of LMICs is crucial.

Given the disparities between LMICs and HICs in addressing AMR 
challenges, it is essential to expand AMR response strategies beyond 
infection control and new antimicrobial development31. This is particu-
larly important considering the disproportionate impact of climate 
change on LMICs, despite their lower contribution to climate change. 
Overemphasizing a single driver of AMR can hinder a comprehensive 
assessment of how various factors, particularly climate change, influ-
ence the development of AMR. In this study, we analyzed global surveil-
lance data on the World Health Organization (WHO) critical priority 
drug-resistant bacterial strains to investigate potential climate and 
socioeconomic determinants of AMR32. Table 1 summarizes our main 
findings and policy implications.

Table 1 | Policy summary

Background AMR poses a substantial threat to global health. At the 
79th UNGA HLM on AMR, global leaders committed 
to reduce human deaths from AMR by 10% by 2030. 
However, little research has explored the evolving 
nature of AMR in the broader context of climate change  
and socioeconomic conditions, particularly in LMICs.

Main findings and 
limitations

We identified several factors associated with global 
AMR, including air pollutant fine particulate matter 
(PM2.5), surface and subsurface runoff, health 
expenditures, out-of-pocket healthcare payments, 
immunization coverage and AMC. By 2050, sustainable 
development efforts are projected to reduce AMR 
prevalence by 5.1% (95% CI, 0.0–26.6%), surpassing 
the effect of reducing AMC (2.1% (95% CI, 0.1–6.7%)). 
Key drivers of this reduction include lowering 
out-of-pocket health expenses, increasing health 
investments, ensuring universal access to WASH 
services and expanding immunization coverage. 
However, long-term climate change impacts are 
expected to continue influencing AMR dynamics. 
Under the worst-case scenario, compared with a 
sustainable low-emission pathway, AMR prevalence 
is projected to increase by 0.9% to 4.1% by 2050 in 
different income-level countries.
Limitations of this study include the inability to 
establish causal relationships due to the use of 
ecological models, the exclusion of certain potential 
AMR influencers, variability in AMR surveillance data 
quality, and the complex interactions between climate 
change, socioeconomic development and the  
COVID-19 pandemic.

Policy implications Particular attention should be directed toward 
LMICs, which bear substantial AMR burdens but have 
limited economic resources. Efforts should prioritize 
supporting these regions in implementing effective 
AMR control measures through a One Health approach, 
recognizing the health of people, animals and the 
wider environment, including ecosystem, are closely 
linked. Addressing the complex interplay between 
climate change, human activities and AMR demands 
sustained research, informed policy development 
and the implementation of targeted interventions.

Results
Spatiotemporal distribution of AMR
Our study collated 4,502 records from 101 countries, using data from 
ResistanceMap, the Global Antimicrobial Resistance and Use Surveil-
lance System (GLASS), the European Antimicrobial Resistance Surveil-
lance Network (EARS-Net), the Central Asian and European Surveillance 
of Antimicrobial Resistance (CAESAR) network and the China Antimi-
crobial Resistance Surveillance System (CARSS)33–37. These datasets 
encompassed over 32 million tested isolates of six AMR profiles, includ-
ing third-generation cephalosporin-resistant Escherichia coli (3GCREC), 
Klebsiella pneumoniae (3GCRKP) and carbapenem-resistant E. coli 
(CREC), K. pneumoniae (CRKP), Acinetobacter baumannii (CRAB) and 
Pseudomonas aeruginosa (CRPA) (Supplementary Table 1-1). However, 
the available data were not proportionally represented across countries 
or regions (Supplementary Table 1-2). In some regions, a large propor-
tion of countries did not report data: 83.3% in Latin America and the 
Caribbean, 70.8% in Sub-Saharan Africa and 57.9% in East Asia and the 
Pacific. Other regions with some data gaps included the Middle East 
and North Africa (31.8%), Europe and Central Asia (29.3%), and South 
Asia (25.0%). Countries marked in gray in Fig. 1 indicate those lacking 
relevant data.

We observed higher average AMR prevalence in regions such 
as South Asia (33.5%), the Middle East and North Africa (30.7%), and 
Sub-Saharan Africa (19.6%). Countries like India, Iran and Egypt exhib-
ited an average AMR prevalence exceeding 50% (Fig. 1a). Regarding the 
annual growth of AMR, the Middle East and North Africa (4.3% annual 
growth rate) and Latin America and the Caribbean (1.9% annual growth 
rate) showed notable increases, with countries such as Malawi, Oman 
and Bahrain leading this trend—all exceeding annual growth rates of 
5%. In contrast, countries including Georgia, the Philippines, Myanmar, 
Jordan, Egypt and China demonstrated a gradual decline in AMR preva-
lence (Fig. 1b). The distribution and progression of various AMR profiles 
are presented in Extended Data Figs. 1 and 2, showing similar patterns.

Overall, there was an increase in the prevalence of AMR since 2000 
in countries across all income groups, despite varying growth rates 
(0.4% annual growth rate (95% confidence interval (CI), −3.2% to 4.1%)) 
and even declining AMR in 20 countries. HICs showed a slower rate 
(0.3% (95% CI, −0.5% to 3.8%)) of increase in AMR prevalence compared 
with LMICs (0.4% (95% CI, −0.7% to 4.1%)) (Fig. 2a).

Substantial variations in AMR prevalence across different profiles 
were observed: 3GCREC, 3GCRKP and CRAB were notably higher, aver-
aging above 20%, compared with CREC and CRKP. With the exception 
of CRPA, there was an increasing trend of AMR in all other resistance 
profiles, with 3GCREC exhibiting the most rapid growth rate (Fig. 2b).

Factors associated with AMR
Multivariable analyses identified several socioeconomic and environ-
mental factors associated with AMR (Supplementary Table 2). Aver-
age AMR prevalence was correlated positively with air pollutant fine 
particulate matter (PM2.5, μg m−3) (0-year lag) (odds ratio (OR) = 1.02; 
95% CI, 1.01–1.04), surface runoff (100 mm) (2-year lag) (OR = 1.22; 
95% CI, 1.05–1.40), out-of-pocket health costs (percentage of health 
expenditures) (3-year lag) (OR = 1.02; 95% CI, 1.01–1.03) and antimi-
crobial consumption (AMC) (defined daily doses (DDD) 1,000−1 day−1) 
(2-year lag) (OR = 1.02; 95% CI, 1.00–1.03). In contrast, average AMR 
prevalence was associated negatively with subsurface runoff (100 mm)  
(2-year lag) (OR = 0.84; 95% CI, 0.76–0.93), health expenditure  
(percentage of gross domestic product (GDP)) (4-year lag) (OR = 0.93; 
95% CI, 0.87–1.00) and immunization coverage (percentage of eligi-
ble population) (2-year lag) (OR = 0.99; 95% CI, 0.98–1.00). Further  
analyses of specific AMR profiles and lag years confirmed these  
associations, with a few exceptions: the prevalence of CRAB (3-year 
lag) was associated positively with temperature change (°C) 
(OR = 1.23; 95% CI, 1.06–1.43), the prevalence of 3GCREC (3-year 
and 1-year lag) was associated positively with international tourism 
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(log(persons)) (OR = 1.04; 95% CI, 1.01–1.07) and population density 
(log(persons km−2)) (OR = 1.51; 95% CI, 1.17–1.97) and the prevalence of 
3GCRKP (4-year lag) (OR = 0.99; 95% CI, 0.98–0.99) and CRPA (0-year 
lag) (OR = 0.99; 95% CI, 0.98–0.99) showed negative associations with 
the corruption perceptions index (CPI) (Fig. 3).

Sensitivity analysis based on the EARS-Net further validated the 
results, confirming significant effects of subsurface runoff (OR = 0.80; 
95% CI, 0.70–0.91), health expenditure (OR = 0.94; 95% CI, 0.89–0.99), 
out-of-pocket health costs (OR = 1.02; 95% CI, 1.01–1.04) and immuni-
zation coverage (OR = 0.97; 95% CI, 0.95–0.99) on AMR prevalence. 
However, it did not reveal significant effects of surface runoff or AMC, 
possibly due to insufficient differentiation in geographical location and 
income levels among the participating countries (Extended Data Fig. 3).

We extended the original multivariable regression models by 
incorporating additional factors with limited monitoring data to 
assess their potential contributions to AMR. These factors included 
the consumption of different classes of antimicrobial agents, educa-
tional attainment and animal AMC. The results indicated a positive 
relationship between AMR prevalence and AMC (DDD 1,000−1 day−1), 
driven primarily by the use of other beta-lactam antibiotics and fluoro-
quinolones. In contrast, tetracyclines (OR = 0.86; 95% CI, 0.78–0.94), 
sulfonamides and trimethoprim (OR = 0.77; 95% CI, 0.62–0.96) and 
aminoglycosides (OR = 0.19; 95% CI, 0.07–0.51) seemed to be cor-
related negatively with AMR prevalence (Fig. 4a). Regarding edu-
cational attainment, secondary school enrollment (percentage of 

school-age population) (OR = 1.00; 95% CI, 1.00–1.01) was associated 
positively with average AMR prevalence, but this relationship was not 
observed in any specific AMR profiles (Fig. 4b). Regarding animal AMC 
(mg kg−1), the use of fluoroquinolones (OR = 1.06; 95% CI, 1.01–1.12) 
seemed to contribute to the increasing prevalence of average AMR, 
whereas cephalosporins (OR = 0.43; 95% CI, 0.24–0.76) had the oppo-
site effect. However, CREC was associated positively with antibiotic 
consumption, while 3GCREC showed a negative correlation with the 
consumption of several types of animal antibiotics. The consumption 
of cephalosporins in animals was correlated negatively with many 
AMR profiles (Fig. 4c).

Forecasts of AMR under different scenarios
To assess the impact of climate change and socioeconomic develop-
ment on AMR, we combined varying levels of socioeconomic develop-
ment, AMC and shared socioeconomic pathways (SSPs) to construct 
a series of AMR development scenarios until 2050 (Extended Data 
Fig. 4). SSPs are a set of global development scenarios that integrate 
socioeconomic trends with climate change outcomes, providing a 
framework to assess how different societal choices—such as economic 
growth, inequality and environmental policies—shape future climate 
risks and adaptation challenges22.

The results indicated that a 50% reduction in AMC could lower AMR 
by an average of 2.1% (95% CI, 0.1–6.7%) by 2050. However, this reduc-
tion was smaller than the potential benefits of sustainable development 

Average prevalence of AMR (%)
<5 5–10 10–20 20–50 >50

a

Average annual growth of AMR (%)
<–5 <0 0–1 1–5 >5

b

Fig. 1 | Global distribution and annual changes in AMR. a, Average prevalence of AMR across different countries and regions. b, Average annual growth of AMR 
prevalence across different countries and regions. Average values were derived from the slopes of linear fits between AMR rates and time. Gray areas, regions with no 
available data.
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efforts, which could reduce AMR by 5.1% (95% CI, 0.0–26.6%) (Fig. 5a). 
For different resistant profiles, the decrease in the prevalence of 
3GCREC, CREC and CRAB seem to be more dependent on sustainable 
development efforts, whereas 3GCRKP, CRKP and CRPA seem to be 
more dependent on reduced AMC (Extended Data Fig. 5).

Across all four SSPs scenarios, AMR prevalence was generally low-
est under the sustainable low-emission pathway scenario (SSP1-2.6 in 
Fig. 5a). By 2050, under the worst-case scenario (SSP5-8.5 in Fig. 5a), 
AMR was projected to increase by 2.4% (95% CI, −2.9% to 14.3%). Spe-
cifically, the projected increases were 0.9% (95% CI, −0.9% to 5.5%) in 
HICs, 1.6% (95% CI, −3.9% to 7.1%) in upper-middle-income countries, 

4.1% (95% CI, −5.2% to 22.3%) in LMICs and 3.3% (95% CI, −0.7% to 13.8%) 
in low-income countries (Fig. 5a).

Among the four specific intervention measures for sustainable 
development—increased health investment; reduced out-of-pocket 
expenses; access to water, sanitation and hygiene (WASH) services; 
and full immunization coverage—reducing out-of-pocket expenses 
was associated with the greatest reduction of AMR by 3.6% (95% CI, 
−0.5% to 21.4%). This was followed by full immunization coverage (1.2% 
(95% CI, −0.1% to 8.2%)). Increased health investment (0.2% (95% CI, 
0.0–2.4%)) and WASH coverage (0.1% (95% CI, 0.0–0.4%]) seemed to 
have minimal effects on AMR (Fig. 5b). In contrast to the resistant E. coli 
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Fig. 2 | Changing trends in AMR across different income groups. a, Average prevalence of AMR. b, Prevalence of six AMR profiles. Income levels were classified by the 
World Bank Atlas method, which categorizes economics based on gross national income per capita.
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and K. pneumoniae strains, whose decrease showed greater benefits 
from reduced out-of-pocket expenses, the reduction in CRAB was more 
affected by access to WASH services, while CRPA was more affected by 
full immunization coverage (Extended Data Fig. 6).

Discussion
Understanding the multifaceted influence of socioeconomic and 
environmental determinants on the spread of AMR is an important 
step in formulating and implementing strategies to combat AMR. 
Through an approach involving ignoring the heterogeneity between 

surveillance networks, our research has found that air pollutant PM2.5, 
surface runoff, subsurface runoff, health expenditures, out-of-pocket 
healthcare payments, immunization coverage and AMC are associated 
with global AMR. Rising ambient temperatures are also associated with 
an increasing prevalence of CRAB. The forecast modeling underscores 
the disparate trajectories of AMR in countries distinguished by different 
development policies and economic tiers. Particularly, it accentuates 
the challenges LMICs face in combating AMR in the context of climate 
change, underscoring the critical need for integrating AMR manage-
ment within the sustainable development framework.
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Fig. 3 | Adjusted ORs of predictors of AMR prevalence on average and for 
specific AMR profiles and lag years. Spatial–temporal mixed-effects models 
with structured random effects were fitted independently for each AMR profile. 
Results are presented as adjusted ORs (points) with 95% CIs (error bars). The 
analysis included 975 independent biological observations for average AMR, 
with specific profiles comprising 945 (3GCREC), 805 (3GCRKP), 870 (CREC), 
774 (CRKP), 510 (CRAB) and 598 (CRPA) observations, respectively. Each 

observation represents a distinct country–year geographical unit. The optimal 
lag year for each predictor was determined by selecting the model with the 
minimum DIC value. a, Effects of quantitative variables, including environmental 
and socioeconomic factors. b, Influence of income group, demonstrating no 
statistically significant effect of income classification on AMR patterns after 
adjusting for potential confounding factors.

http://www.nature.com/naturemedicine


Nature Medicine | Volume 31 | June 2025 | 1798–1808 1803

Article https://doi.org/10.1038/s41591-025-03629-3

Our quantitative analysis connects AMR with a range of environ-
mental factors associated with climate change. Previous studies have 
demonstrated that these factors probably have direct or indirect effects 
on the proliferation of drug-resistant bacteria and the horizontal trans-
mission of AMR genes18,38–41. Rising temperatures are among the most 
tangible effects of climate change, and the impact of ambient tem-
perature on AMR was first observed in studies conducted in the United 
States and Europe14–16. However, some researchers have suggested that 
this association may be confounded by socioeconomic factors42. In this 
study, we confirmed a positive association between ambient tempera-
ture and prevalence of CRAB. This finding contrasts with our previous 
results, which demonstrated a positive association between ambient 
temperature and CRKP and CRPA, but not CRAB13. This discrepancy 
underscores the existence of species-specific responses to temperature 
elevation among bacterial pathogens. For instance, in A. baumannii, 
low temperatures upregulate resistance genes (for example, adeJ, oxa-
51 and oxa-23) and enhance meropenem stress tolerance43, whereas in 
P. aeruginosa, elevated temperatures inactivate genes such as PA3242 
and PA0011, leading to outer membrane destabilization and increased 
carbapenem susceptibility44,45. These pathogen-specific mechanisms 
highlight the complex, temperature-dependent nature of AMR evolu-
tion. Of particular concern is the potential for sustained warming to 
reduce the fitness cost associated with resistance mutations, thereby 
enabling resistant bacterial populations to persist without evolution-
ary trade-offs10,46. This phenomenon could lead to the establishment 
of persistent AMR reservoirs in the context of ongoing climate change, 
emphasizing the importance of identifying temperature-sensitive 
pathogens for the development of targeted mitigation strategies.

We observed an association between PM2.5 and AMR, consistent 
with a previous study17. As a common air pollutant, PM2.5 can penetrate 
deep into the lungs and enter the bloodstream, which could lead to 
cardiovascular (ischemic heart disease), cerebrovascular (stroke) 
and respiratory impacts47. The mechanisms through which PM2.5 may 
influence AMR development are multifaceted. First, PM2.5 particles 
can serve as vectors for drug-resistant bacteria or genetic material, 
thereby facilitating their transmission between environmental res-
ervoirs and human hosts17,18. Second, PM2.5 exposure may indirectly 
promote AMR development by exacerbating respiratory conditions, 
consequently increasing the demand for antibiotic treatments. This 
mechanistic pathway is supported by empirical evidence demonstrat-
ing that short-term exposure to air pollution correlates with elevated 
antimicrobial usage following primary care consultations for acute 
respiratory symptoms in the general population48. Although antibiotic 
pollutants and AMR genes have been detected in various aquatic envi-
ronments, little is known about the factors influencing the transmission 
of resistant microorganisms between humans and the environment49. 
Although many studies have highlighted the AMR risks associated with 
flooding19–21, our study provides evidence that runoff is correlated 
with AMR.

Socioeconomic factors are critical determinants of AMR, with AMC 
being one of the most concerning contributors. Previous ecological 
studies have reported inconsistent correlations between AMC and 
AMR, raising questions about the effectiveness of limiting AMC as a 
standalone strategy for AMR containment23,50,51. One possible con-
founding factor is the dynamics of AMR transmission among hosts, 
which may not be fully addressed by simply reducing antimicrobial 
usage5. Using a spatial–temporal mixed-effects model, we observed a 
positive association between AMC and AMR, with particularly strong 

impacts from certain classes of antibiotics, including beta-lactams and 
fluoroquinolones. These findings suggest that optimizing antimicro-
bial usage patterns could help curb AMR crisis. This optimization could 
involve increasing the use of less frequently prescribed antibiotics, 
such as tetracyclines, sulfonamides, trimethoprim and aminoglyco-
sides. Additionally, expanding immunization coverage and improving 
WASH initiatives could be effective strategies to reduce AMR by lower-
ing the need for antimicrobial treatments for infectious diseases52–54. 
Even after adjusting for AMC, we observed an independent effect of 
immunization that extends beyond reducing antimicrobial usage. 
This finding potentially highlights the role of vaccines in preventing 
pathogen colonization52.

In addition to AMC, demographic factors also warrant attention. 
Our analysis found that high population density was positively associ-
ated with prevalence of 3GCREC, as previous studies have correlated 
this with increased AMR55. In areas with underdeveloped social systems, 
increased population density may be a main factor contributing to 
elevate pathogen transmission. In more developed regions, factors 
such as high immunization coverage and access to WASH facilities 
could mitigate the potential impact of population density on AMR56. 
Moreover, our findings highlight the role of human mobility in shaping 
certain AMR profiles, such as 3GCREC. Human mobility, particularly 
driven by the growing international tourism industry, has emerged as 
a critical factor in the global spread of AMR57. Travelers visiting regions 
with high levels of resistance are at increased risk of encountering 
resistant bacteria, which they may carry back to their home countries, 
thereby potentially contributing to the worldwide dissemination of 
these pathogens58,59.

In our analysis, economic factors were found to be correlated with 
the development of AMR that was just as comparable as AMC. Higher 
out-of-pocket health costs and lower health expenditures were both 
associated with increased AMR. High out-of-pocket expenses, in par-
ticular, reflect excessive prescriptions and reduced quality standards60. 
Increasing investment in health funding for new medicines, diagnostic 
tools, vaccines, and other interventions remains a cornerstone of the 
global action plan on AMR61. Furthermore, our findings revealed a 
negative correlation between poor governance—measured by the 
CPI—on the prevalence of 3GCRKP and CRPA. This underscores the 
critical role of effective government regulations in curbing irrational 
antibiotic prescriptions27.

Scenario simulations further highlight the impacts of socioeco-
nomic factors on AMR. Specifically, compared with limiting AMC, 
sustainable development efforts that emphasize universal access to 
WASH services, comprehensive immunization coverage, adequate 
health investments and affordable out-of-pocket healthcare costs can 
help LMICs better address AMR challenges. Additionally, our analysis 
suggested the impact of the COVID-19 pandemic on socioeconomic 
factors, such as the decline in international travel, increased AMC and 
higher out-of-pocket health expenditures. These interconnected fac-
tors introduce further uncertainty regarding the future trajectory of 
AMR, especially in LMICs. Therefore, considering the diverse resource 
availability, needs and priorities in LMICs, focusing on foundational 
health measures may be a more practical approach than allocating 
limited resources to the development of new antibiotics and diagnostic 
strategies31.

At the 2024 United Nations General Assembly (UNGA) High-Level 
Meeting (HLM) on AMR, member states adopted a political declaration 
to address AMR through a ‘One Health’ approach62. This declaration 

Fig. 4 | Adjusted ORs of additional predictors of AMR on average and for 
specific AMR profiles and lag years. Spatial–temporal mixed-effects models 
with structured random effects were fitted independently for each AMR profile. 
Results are presented as adjusted ORs (points) with 95% CIs (error bars). The 
analysis included 975 independent biological observations for average AMR,  
with specific profiles comprising 945 (3GCREC), 805 (3GCRKP), 870 (CREC),  

774 (CRKP), 510 (CRAB) and 598 (CRPA) observations, respectively. Each 
observation represents a distinct country–year geographical unit. The 
optimal lag year for each predictor was determined by selecting the model 
with the minimum DIC value. a, Impact of consumption of different classes of 
antimicrobial agents on AMR prevalence. b, Influence of educational factors on 
AMR prevalence. c, Effect of animal AMC on human AMR prevalence.
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sets targets, including a 10% reduction in AMR-related deaths by 
2030, and the allocation of US$100 million in catalytic funding to 
achieve at least 60% of countries having national action plans on AMR 
by 2030. Crucially, it emphasizes multisectoral coordination across 
human health, agriculture and environmental sectors—a framework 
that aligns closely with our findings on the interconnected roles 
of socioeconomic, environmental and healthcare determinants in 
driving AMR.

Our findings provide evidence to operationalize the 2024 UNGA 
declaration on AMR in guiding LMICs’ prioritization of interventions. 
Although reducing AMC yields modest AMR reductions (2.1% by 2050), 
sustainable development strategies—emphasizing equitable health-
care access and climate resilience—offer 2.4-fold greater benefits  
(5.1% reduction). This aligns with the declaration’s call for multisectoral 
action, as our future scenario analyses reveal that SSP1-2.6 (sustain-
able pathway) minimizes AMR burden by synergistically addressing 
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Fig. 5 | Forecasting AMR across different countries under various scenarios. 
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socioeconomic disparities. LMICs face disproportionate risks: under 
SSP5-8.5 (high emissions/inequality), LMICs may experience up to 
22.3% AMR increases. To maximize effects, LMICs should prioritize (1) 
reducing out-of-pocket health expenses, which curbs irrational antibi-
otic use driven by unaffordable diagnostics; (2) scaling immunization, 
particularly for CRPA-prone regions and (3) context-specific WASH 
investments, crucial for curbing CRAB transmission. These measures 
directly support the UNGA’s funding targets for national action plans. 
By embedding these priorities within climate adaptation frameworks 
(for example, flood-resistant WASH systems) and governance reforms 
(for example, anticorruption measures), LMICs can transform the ‘One 
Health’ approach into localized interventions.

Although the immediate effects of climate change on AMR may 
not be as evident as those driven by sustainable development efforts or 
reductions in AMC, the long-term impact of climate change on AMR pre-
sents a considerable challenge10. Climate change can exacerbate AMR 
through several pathways. Extreme weather events, such as heavy rain-
fall and floods, critically challenge AMR prevention efforts in LMICs. 
These events not only increase the risk of AMR spread but also threaten 
to destabilize already vulnerable health infrastructure, complicating 
antimicrobial stewardship and infection prevention efforts63. Further-
more, climate change, in combination with human activities, is altering 
animal habitats and natural microbial ecosystems, which increases the 
likelihood of zoonotic and vector-borne diseases11,12. Environmental 
degradation, particularly air pollution and changes in surface runoff 
due to urbanization and the spread of impermeable surfaces, further 
exacerbates these risks by disrupting urban hydrological cycles and 
potentially facilitating the wider spread of AMR64. These challenges 
highlight the urgent need for global cooperation in developing and 
implementing strategies to address the interconnected and evolving 
threats posed by climate change and AMR65.

This study has several limitations that warrant attention. First, 
our ability to draw causal inferences is limited due to the lack of a 
clear causal sequence. The study relies on ecological models, which 
limits the establishment of definitive causal links between the factors 
studied and AMR. For instance, it remains challenging to determine 
whether AMC drives the development of AMR or whether increased 
AMR leads to greater AMC. Consequently, when highlighting the effects 
of interventions, we relied on factors validated by existing evidence and 
grounded in hypothesized causal mechanisms, rather than exclusively 
on data-driven variables. However, we explored the lagged associations 
between important covariates and current AMR prevalence to provide 
further context.

Second, some variables that have been reported as potential 
influencers of AMR dynamics, such as education, antimicrobial use 
in food production and animal husbandry66, were not included in our 
primary model. However, where feasible, some of these factors were 
incorporated into supplementary analyses to assess their potential 
impacts. This study does not include analyses or reporting related to 
sex or gender, as it relies on aggregated national and annual-level data 
that do not necessitate gender-specific analysis.

Third, the variability in the quality and standards of AMR sur-
veillance data across different networks presents a challenge to 
comparability67,68. This limitation undermines the robustness of data 
analyses, as it constrains our ability to make meaningful comparisons 
between regions or over time. Moreover, relying solely on patient 
data for passive surveillance may lead to an overestimation of AMR 
in the community, as these data may not fully represent the broader 
population. This limitation should be considered when interpreting the 
findings and generalizing to the wider community. Given the scarcity 
of surveillance data in LMICs, careful interpretation and generalization 
of the model estimation results are necessary.

Finally, climate change and socioeconomic development are inter-
twined, rather than independent factors, as assumed in our forecast 
modeling. Specifically, environmental and socioeconomic changes 

are mutually influential. Additionally, the COVID-19 pandemic has 
simultaneously impacted various socioeconomic factors, particularly 
international tourist numbers and antibiotic consumption data69, 
underscoring the need for ongoing monitoring and periodic reas-
sessment. Despite these complexities, the ecological model remains 
a valuable tool for assessing factors that affect AMR transmission70.

In conclusion, our study underscores the potential substantial 
impact of climate change on AMR through various pathways, including 
air pollution, surface runoff and subsurface runoff. In addition to AMC, 
socioeconomic factors—health investment, out-of-pocket health costs, 
access to WASH services and immunization coverage—also contribute 
to the rise of AMR. Whereas short-term sustainable development initia-
tives and efforts to reduce AMC can help mitigate the rapid growth of 
AMR, it is important to recognize that the long-term consequences of 
climate change and human activities will continue to influence AMR 
dynamics. Therefore, comprehensive evaluation and management 
strategies are essential and must involve global collaboration. Particular 
attention should be given to LMICs that face substantial AMR burdens 
but have limited economic resources. Efforts must focus on supporting 
these regions in implementing effective AMR control measures and 
improving healthcare infrastructure. Addressing the complex relation-
ship between climate change, human activities and AMR requires ongo-
ing research, policy development and the implementation of targeted 
interventions. A multifaceted and collaborative approach is critical 
to effectively managing AMR and safeguarding global public health.
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Methods
Study design and data source
In this global longitudinal observatory study, we analyzed a dataset 
of AMR profiles covering 101 countries from 1999 to 2022, alongside 
a range of associated climate and socioeconomic variables. The six 
AMR profiles on the WHO priority list include 3GCREC, 3GCRKP, CREC, 
CRKP, CRAB and CRPA32. The AMR data were derived primarily from 
ResistanceMap, a collection of tools summarizing national and subna-
tional data on antimicrobial use and resistance around the world. The 
primary sources of data are public and private laboratory networks 
that routinely collect AMR test results33. This was supplemented by 
several original data sources, including GLASS, EARS-Net, the CAESAR 
network and CARSS. The antibiotic susceptibility testing mainly fol-
lowed the guidelines and quality control requirements specified in the 
Clinical and Laboratory Standards Institute and European Committee 
on Antimicrobial Susceptibility Testing71.

GLASS, launched by WHO in October 2015, is the first global ini-
tiative to standardize AMR surveillance. Initially focused on bacteria 
causing common human infections, it now also tracks AMC, invasive 
fungal infections and implements a One Health surveillance model that 
integrates human health34.

EARS-Net, coordinated by the European Center for Disease Preven-
tion and Control, is Europe’s largest publicly funded AMR surveillance 
system. It requires all European Union/European Economic Area coun-
tries to report data annually35. The CAESAR network—a joint initiative 
involving WHO/Europe, the European Society of Clinical Microbiology 
and Infectious Diseases and the Dutch National Institute for Public 
Health and the Environment—covers all countries in the WHO European 
Region not included in EARS-Net36.

CARSS, established in 2005, is China’s national initiative for moni-
toring and addressing AMR. It was launched by the Ministry of Health, 
with leadership from the Chinese Hospital Association and Peking 
University’s Clinical Pharmacology Institute. The system currently 
covers over 4,000 hospitals across all 31 provinces and cities in China37.

AMC data were sourced from GLASS, the ESAC-Net and the GRAM 
project.

ESAC-Net is a Europe-wide network providing reference data on 
AMC. It collects and analyzes consumption data from European Union/
European Economic Area countries, covering both community and 
hospital sectors72.

GRAM estimates antibiotic consumption using data from sources 
like IQVIA, WHO and ESAC-Net, along with sociodemographic and 
health covariates, to model total antibiotic use73.

Additionally, data on antimicrobial use in animals were obtained 
from the Animal Antimicrobial Use Global Database (ANIMUSE). ANI-
MUSE was established by the World Organisation for Animal Health in 
September 2022. This automated system covers nearly 80% of global 
geography and 65% of the world’s total animal biomass74.

Historical environmental data were obtained from the European 
Center for Medium-Range Weather Forecasts Reanalysis v5 (ERA5), the 
Atmospheric Composition Analysis Group75 and Agriculture Organiza-
tion Statistics (FAOSTAT). Scenario-forecast data were acquired from 
the Coupled Model Intercomparison Project Phase 6 (CMIP6) and SSPs 
public database. We calculated the average value of each variable for 
each country and year based on the high-resolution spatiotemporal 
data provided by those datasets.

ERA5, produced by the Copernicus Climate Change Service (C3S) 
at European Center for Medium-Range Weather Forecasts, offers hourly 
estimates of atmospheric, land and oceanic climate variables from 
January 1940 to the present. The dataset covers the Earth on a 31 km 
grid, with 137 vertical levels extending up to 80 km (ref. 76). FAOSTAT 
provides food and agriculture data for over 245 countries and territo-
ries, spanning from 1961 to the latest available year77.

CMIP6 is an international collaboration focused on climate 
model simulations to better understand climate change. It provides a 

framework for comparing models from various research institutions, 
assessing the impact of factors like greenhouse gas emissions, aerosols 
and land-use changes78. A key component is its integration with SSPs, 
which describe different global development scenarios based on vary-
ing socioeconomic development, technology and policy responses. 
And the SSP public database includes scenario data from integrated 
assessment models, quantifying factors like population, economic 
growth, land use and energy consumption79.

Socioeconomic data were sourced from the DataBank and Inter-
national Transparency. DataBank is a tool for analyzing and visualizing 
time series data on various topics. The World Development Indicators 
is the World Bank’s main collection of development indicators, sourced 
from officially recognized international sources. It provides the most 
current and accurate global development data, including national, 
regional and global estimates80, as well as country classification by 
region and income (Extended Data Fig. 7).

Transparency International is a global nongovernmental organi-
zation dedicated to fighting corruption, promoting transparency and 
enhancing civil society participation. Its CPI is a widely recognized tool 
that measures the perceived level of corruption in the public sector of 
countries. Based on surveys from experts and business leaders, the CPI 
is scored from 0 (highly corrupt) to 100 (corruption-free)81.

All data sources and corresponding URLs are now provided in the 
Supplementary Table 3.

Dependent variable
To provide a general overview of AMR, we computed the average preva-
lence of AMR for each country by employing country-level annual geo-
metric averaging across six AMR profiles (equation (1)). This approach 
served two purposes: it (1) effectively captured minor variations in low 
resistance rates while mitigating the influence of larger fluctuations in 
high resistance rates and (2) provided a comprehensive representa-
tion of the sigmoidal progression in AMR development82. Employing 
geometric means allowed for a more integrated analysis of the develop-
ment stages of diverse antimicrobial-resistant profiles.

We then applied logit transformation to the average prevalence 
of AMR (equation (2)), which was designed to broaden the range of 
ratios within our model.

Raverage = 6√R3GCREC × R3GCRKP × RCREC × RCRKP × RCRAB × RCRPA (1)

logit (R) = log ( R
1 − R ) (2)

Independent variable
Independent variables were selected according to three principles:

(1)	 Environmental or socioeconomic factors previously identified 
in the literature as influencing AMR in humans.

(2)	 Available from the national-level comprehensive monitoring 
data.

(3)	 Minimal correlations with each other to preclude 
multicollinearity.

This resulted in measurements of air quality (for example, PM2.5), 
water conditions (surface and subsurface runoff) and ambient tem-
perature representing environmental factors, economic growth, 
healthcare resources (for example, health expenditures, out-of-pocket 
expenditures, immunization coverage), sanitation (for example, WASH 
coverage), population structure (for example, population density, 
urban population, international tourism) and governance (for exam-
ple, CPI) representing socioeconomic factors, and AMC representing 
human behaviors.

We transformed the skewed data into ratio forms, such as the pro-
portion of health expenditure to GDP and the share of out-of-pocket 
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payments in total health expenditure. The variables exhibiting expo-
nential changes, such as population density and international tourists, 
were logarithmically transformed (Supplementary Table 2). Extended 
Data Fig. 8 illustrates the evolving trends of the variables used in the 
multivariable analysis.

Statistical analysis
Our analysis encompassed both descriptive analysis and multivariable 
analysis. The primary results were calculated based on the average 
prevalence of AMR, along with the results of specific AMR profiles.

Descriptive analysis included global distribution maps illustrating 
the average prevalence of AMR and its average rate of annual change. 
The average annual growth rate was calculated as the slope of the linear 
regression between the year and AMR prevalence. Scatter plots were 
used to describe the trends of specific AMR profiles within each country 
group classified by income.

We employed Pearson tests to test the correlations between 
the dependent variable and each independent variable (Extended 
Data Fig. 9). Multivariable analyses were performed using a spatial– 
temporal mixed-effects model with structured random effects.  
Given the spatiotemporal nature of the dependent variable, ‘year’ and 
‘country’ were incorporated as structured random effects in the model 
(equation (3)), with ‘year’ modeled using a random walk (RW1) process 
and ‘country’ modeled using a Besag–York–Mollié (BYM) approach83 
based on a spatial adjacency matrix W (Extended Data Fig. 7a).

logit (R) = β0 + β1x1 +…+ βixi + IncomeGroup

+f (year,model = “rw1”) + f (country,model = “BYM”,graph = W)
(3)

Where R is the prevalence of AMR and xi denotes the various independ-
ent variables. Exponential transform βi signifies the OR for the risk of 
AMR relative to non-AMR, corresponding to a unit increase in a given 
independent variable. Furthermore, we created lag variables with a 
maximum lag of 4 years for each predictor, selected based on the sta-
tistical model’s deviance information criterion (DIC) to identify the 
optimal lag period (Extended Data Fig. 10). For sensitivity analysis, we 
conducted separate modeling for each specific AMR profile.

Considering the heterogeneity across different surveillance net-
works, we conducted a subgroup analysis based on the EARS-Net, which 
contributed 2,891 observations covering six AMR profiles, accounting 
for 64.2% of our whole dataset. Additionally, given the limited number 
of observations for some variables that might still have a significant 
impact on AMR, we included them as supplementary covariates in our 
primary model. These additional variables included the consumption 
of different classes of antimicrobial agents, education factors and 
animal AMC. The effects of these covariates on AMR were evaluated 
carefully.

All analyses were conducted in R v.4.4.1 (R Foundation for Statisti-
cal Computing) with the ‘INLA’ (integrated nested laplace approxima-
tion) package84. Because INLA uses efficient Bayesian inference, it does 
not provide traditional P values for parameter significance. Instead, it 
estimates confidence intervals for the model parameters, which serve 
as a measure of uncertainty in the estimates.

Scenarios
We projected AMR trends up to 2050, utilizing predictive datasets 
under various scenarios (Supplementary Table 4). Our environmental 
factor projections included temperature, runoff and PM2.5 under four 
SSPs: SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5.

SSPs were developed based on representative concentration path-
ways (RCPs), which are part of the coupled model intercomparison 
project phase 5 (CMIP5). Whereas RCPs focus primarily on quantify-
ing greenhouse gas concentration trajectories and their radiative 
forcing effects on the climate system, SSPs extend this by integrating 
socioeconomic dimensions such as population growth, technological 

advancements and economic development. The differences among 
SSPs reflect these varying societal trajectories, providing a more com-
prehensive analysis of how global climate change may unfold under 
different socioeconomic scenarios22.

SSP1-2.6 merges a sustainable development pathway (SSP1) with 
a low greenhouse gas concentration trajectory (RCP2.6), envisioning 
a future oriented towards sustainability, with substantial investments 
in education, health and renewable energy, targeting low emissions 
and striving to limit global warming to well below 2° C. This pathway 
emphasizes environmental protection and social equity.

SSP2-4.5 pairs a moderate development pathway (SSP2) with 
an intermediate greenhouse gas concentration trajectory (RCP4.5), 
depicting a future that follows historical trends, with moderate eco-
nomic development and emissions, and partial progress towards sus-
tainability, but lacking radical behavioral shifts or large advances in 
green technology.

SSP3-7.0 links a fragmented world scenario (SSP3) with a 
high-emission trajectory (RCP7.0), portraying a future of regional 
disputes, prioritizing national security over global environmental 
concerns, leading to high emissions and scant international coopera-
tion on climate change, potentially resulting in notable global warming 
and adaptation challenges.

SSP5-8.5 combines a fossil-fuel intensive development pathway 
(SSP5) with the highest greenhouse gas concentration trajectory 
(RCP8.5), imagining a future driven by rapid economic growth reliant 
on fossil fuels, resulting in high energy consumption and emissions—
a scenario that could lead to severe climate change impacts due to 
extremely high global temperatures.

To explore different future outcomes, we developed four socio-
economic scenarios, each incorporating two intervention strategies 
aimed at addressing AMR. The first strategy envisions a 50% reduction 
in AMC, reflecting the potential impact of antimicrobial stewardship 
initiatives85. The second strategy focuses on sustainable develop-
ment, outlining a future in which, by 2050, there is universal access 
to WASH services, comprehensive immunization coverage86 and 
health investments that support sustainable development (at least 
5% of GDP). These goals also aim to prevent catastrophic household 
health expenditure by limiting out-of-pocket costs to less than 20% of 
total health expenditures87. Furthermore, we broke down sustainable 
development efforts into four specific interventions to assess their 
individual effects. Extended Data Fig. 4 illustrates the evolving trends 
of the variables used in our forecasting model.

Ethics and inclusion statement
This study used publicly available datasets, with no further primary 
data collection involving human or animal subjects. The AMR profiles 
and associated variables analyzed in this study were derived from 
the globally recognized and accessible databases, including Resist-
anceMap, CAESAR, EARS-Net, CARSS, GLASS, ESAC-Net, GRAM and 
others. These data sources reflect the efforts of international research 
communities and institutions with diverse representation and inclusiv-
ity, whose contributions we acknowledge with gratitude.

The authorship reflects substantial contributions to funding 
acquisition, data analysis interpretation, manuscript preparation 
and critical revisions. We have a research team comprising authors 
from Mainland China, Australia, the United Kingdom, China Hong Kong 
SAR and the United States.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The datasets analyzed during the current study are all publicly 
available. The AMR data derived primarily from ResistanceMap 
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(https://resistancemap.onehealthtrust.org/AntibioticResistance.
php), supplemented by EARS-Net, https://www.ecdc.europa.eu/ 
en/antimicrobial-resistance/surveillance-and-disease-data) and 
CARSS (https://www.carss.cn/). AMC data were sourced from 
GRAM (https://www.tropicalmedicine.ox.ac.uk/gram/research/
visualisation-app-antibiotic-usage-and-consumption), GLASS 
(https://www.who.int/initiatives/glass), ESAC-Net (https://www.
ecdc.europa.eu/en/antimicrobial-consumption/surveillance-and- 
disease-data/database) and ANIMUSE (https://amu.woah.org/
amu-system-portal/home). Historical environmental data were 
obtained from ERA5 (https://cds.climate.copernicus.eu/datasets), 
the Atmospheric Composition Analysis Group (https://sites.wustl.
edu/acag/datasets/surface-pm2-5/) and FAOSTAT (https://www.fao.
org/faostat/en/#data/ET). Scenario-forecast data were acquired from 
CMIP6 (https://cds.climate.copernicus.eu/datasets) and the SSP public 
database (https://tntcat.iiasa.ac.at/SspDb/). Socioeconomic data 
were sourced from the Databank (https://databank.worldbank.org/) 
and International Transparency (https://us.transparency.org/). The 
final data were obtained through a combination of manual recording 
and direct export from various established databases. The materials 
and datasets that support the findings of this study are available at 
https://github.com/Li-weibin/AMR-in-climate-change. Source data 
are provided with this paper.

Code availability
Codes to reproduce the statistical analysis are made available at https://
github.com/Li-weibin/AMR-in-climate-change.
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Extended Data Fig. 1 | Global distribution of antimicrobial resistance of 
different profiles. (a) Third-generation cephalosporin-resistant Escherichia  
coli. (b) Third-generation cephalosporin-resistant Klebsiella pneumoniae.  

(c) Carbapenem-resistant Escherichia coli. (d) Carbapenem-resistant  
Klebsiella pneumoniae. (e) Carbapenem-resistant Acinetobacter  
baumannii. (f) Carbapenem-resistant Pseudomonas aeruginosa.
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Extended Data Fig. 2 | Changes of antimicrobial resistance of different 
profiles. (a) Third-generation cephalosporin-resistant Escherichia coli.  
(b) Third-generation cephalosporin-resistant Klebsiella pneumoniae.  

(c) Carbapenem-resistant Escherichia coli. (d) Carbapenem-resistant  
Klebsiella pneumoniae. (e) Carbapenem-resistant Acinetobacter baumannii.  
(f) Carbapenem-resistant Pseudomonas aeruginosa.
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Extended Data Fig. 3 | Subgroup analysis based on the European Antimicrobial 
Resistance Surveillance Network (EARS-Net). Spatial-temporal mixed effects 
models with structured random effects were independently fitted for each 
AMR profile. Results are presented as adjusted odds ratios (points) with 95% 
confidence intervals (error bars). EARS-Net contributed 2,891 observations 
covering six AMR profiles, accounting for 64.2% of our total data. We selected 
EARS-Net data for this analysis to minimize the impact of surveillance network 
heterogeneity. The optimal lag year for each predictor was determined by 
selecting the model with the minimum Deviance Information Criterion 
(DIC) value. Panel (A) shows the effects of quantitative variables, including 

environmental and socioeconomic factors. Panel (B) displays the influence 
of income groups, demonstrating no statistically significant effect of income 
classification on antimicrobial resistance patterns after adjusting for potential 
confounding factors. WASH = Water, Sanitation, and Hygiene. 3GCREC = third-
generation cephalosporin-resistant Escherichia coli. 3GCRKP = third-generation 
cephalosporin-resistant Klebsiella pneumoniae. CREC = carbapenem-resistant 
Escherichia coli. CRKP = carbapenem-resistant Klebsiella pneumoniae. CRAB = 
carbapenem-resistant Acinetobacter baumannii. CRPA = carbapenem-resistant 
Pseudomonas aeruginosa.
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Extended Data Fig. 4 | Changing trends of the variables used in forecast 
modelling. Panel (a) shows the trend of environmental variables in different 
scenarios, with the smooth solid line representing the seven-year moving 

average, and panel (b) shows the demographic variables, while panel (c) shows 
the socioeconomic variables. The vertical dashed line in panel (c) represents the 
year of 2030. WASH = Water, Sanitation, and Hygiene.
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Extended Data Fig. 5 | The impact of specific sustainable development efforts on 
different resistant profiles. 3GCREC = third-generation cephalosporin-resistant 
Escherichia coli. 3GCRKP = third-generation cephalosporin-resistant Klebsiella 

pneumoniae. CREC = carbapenem-resistant Escherichia coli. CRKP = carbapenem-
resistant Klebsiella pneumoniae. CRAB = carbapenem-resistant Acinetobacter 
baumannii. CRPA = carbapenem-resistant Pseudomonas aeruginosa.
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Extended Data Fig. 6 | The impact of individual intervention measures on 
different resistant profiles. 3GCREC = third-generation cephalosporin-resistant 
Escherichia coli. 3GCRKP = third-generation cephalosporin-resistant Klebsiella 

pneumoniae. CREC = carbapenem-resistant Escherichia coli. CRKP = carbapenem-
resistant Klebsiella pneumoniae. CRAB = carbapenem-resistant Acinetobacter 
baumannii. CRPA = carbapenem-resistant Pseudomonas aeruginosa.
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Extended Data Fig. 7 | Classification of regions and income groups. (a) Regions. The black grid represents the adjacency matrix composed of countries with shared 
borders. (b) Income groups.

http://www.nature.com/naturemedicine


Nature Medicine

Article https://doi.org/10.1038/s41591-025-03629-3

Extended Data Fig. 8 | Changing trends of the independent variables used for statistical modelling in the countries with different income over the period from 
1999 to 2022. The vertical dashed line represents the year 2020. WASH = Water, Sanitation, and Hygiene.
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Extended Data Fig. 9 | Correlations between average antimicrobial resistance 
and independent variables. This comprehensive visualization presents 
pairwise relationships between variables through a scatterplot matrix. The 
lower triangular section displays bivariate relationships, showing observed 
values (scatter points) overlaid with linear regression fits and corresponding 
confidence intervals, stratified by national income groups. The upper triangular 

section presents Pearson correlation coefficients with significance levels 
indicated by asterisks (*p < 0.05, **p < 0.01, ***p < 0.001). The diagonal elements 
contain variable distribution stratified by different income groups. Different 
colours indicate data from different income groups, in which blue, orange, green, 
red represent high-income, upper-middle, lower-middle and lower-income 
economies, respectively. WASH = Water, Sanitation, and Hygiene.
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Extended Data Fig. 10 | Estimates of variables with different lag period in the 
models. We incorporated the lagged values of each variable with a maximum of 
4 years into the models for analysis. The optimal lag period is in the model which 
has the smallest Deviance Information Criterion (DIC). The analysis included 
975 independent biological observations for average AMR, with specific profiles 
comprising 945 (3GCREC), 805 (3GCRKP), 870 (CREC), 774 (CRKP), 510 (CRAB), 
and 598 (CRPA) observations, respectively. Results are presented as adjusted 

odds ratios (points) with 95% confidence intervals (error bars). WASH = Water, 
Sanitation, and Hygiene. 3GCREC = third-generation cephalosporin-resistant 
Escherichia coli. 3GCRKP = third-generation cephalosporin-resistant Klebsiella 
pneumoniae. CREC = carbapenem-resistant Escherichia coli. CRKP = carbapenem-
resistant Klebsiella pneumoniae. CRAB = carbapenem-resistant Acinetobacter 
baumannii. CRPA = carbapenem-resistant Pseudomonas aeruginosa.
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